Kontaktloses Radar
HeimHeim > Nachricht > Kontaktloses Radar

Kontaktloses Radar

Aug 22, 2023

Wissenschaftliche Berichte Band 12, Artikelnummer: 5150 (2022) Diesen Artikel zitieren

6734 Zugriffe

11 Zitate

9 Altmetrisch

Details zu den Metriken

Systeme zur Überwachung der Vitalfunktionen sind bei der Versorgung hospitalisierter Neugeborener von entscheidender Bedeutung. Aufgrund der Unreife ihrer Organe und ihres Immunsystems benötigen Frühgeborene eine kontinuierliche Überwachung ihrer Vitalparameter und Sensoren müssen direkt an ihrer empfindlichen Haut angebracht werden. Neben Bewegungseinschränkungen und Stress verursachen diese Sensoren häufig Hautreizungen und können zu Drucknekrosen führen. In dieser Arbeit zeigen wir, dass ein kontaktloser, auf Radar basierender Ansatz für die Atemüberwachung auf der Neugeborenen-Intensivstation (NICU) sinnvoll ist. Zum ersten Mal werden verschiedene Szenarien untersucht, die im Alltag auf der neonatologischen Intensivstation üblich sind, und die Herausforderungen der Überwachung in einem realen klinischen Umfeld werden durch verschiedene Beiträge im Signalverarbeitungsrahmen angegangen. Anstatt Messungen bei starker Interferenz einfach zu verwerfen, präsentieren wir eine neuartige Technik zur Abschwächung zufälliger Körperbewegungen, die auf der Zeit-Frequenz-Zerlegung des wiederhergestellten Signals basiert. Darüber hinaus schlagen wir einen einfachen und genauen Frequenzschätzer vor, der die harmonische Struktur des Atemsignals untersucht. Dadurch ist die vorgeschlagene Radar-basierte Lösung in der Lage, eine zuverlässige Atemfrequenzschätzung zu liefern, die in den meisten Fällen nahe an den Referenzwerten des kabelgebundenen Geräts liegt. Unsere Ergebnisse werfen ein Licht auf die Stärken und Grenzen dieser Technologie und legen den Grundstein für zukünftige Studien zu einer vollständig kontaktlosen Lösung zur Überwachung der Vitalfunktionen.

Fast 15 Millionen Säuglinge werden jedes Jahr vor der 37. Schwangerschaftswoche geboren, was bedeutet, dass etwa 10 % aller Geburten weltweit Frühgeburten sind1. Aufgrund ihrer unreifen Organsysteme und damit verbundenen Funktionen sowie ihres Immunsystems sind diese Säuglinge einem höheren Risiko für Infektionen, chronische Krankheiten und Atemwegsprobleme ausgesetzt. Die Unreife der Atemregulation und der Lunge führt häufig zu Apnoe-Bradykardie und Atemnotsyndromen. Darauf folgt häufig eine bronchopulmonale Dysplasie bei 27 % der Säuglinge, die in weniger als 30 Schwangerschaftswochen geboren wurden2,3,4,5. Folglich muss die weitere Entwicklung dieser Frühgeborenen ex-utero fortgesetzt werden, und sie müssen in der Regel mehrere Wochen auf einer Neugeborenen-Intensivstation (NICU) verbringen.

Während dieser Zeit ist eine kontinuierliche Überwachung ihrer unterentwickelten Organe notwendig. Neugeborene sind häufig auf parenterale Ernährung, Atemunterstützung und invasive diagnostische Eingriffe angewiesen, die zwar überlebenswichtig sind, für das Kind jedoch Stress verursachen können. Auch grundlegende Vitalparameter wie Atmung, Herzfrequenz und Sauerstoffsättigung müssen überwacht werden. Dazu werden mehrere Sensoren direkt auf ihrer empfindlichen Haut befestigt und über Kabel mit den Überwachungssystemen verbunden. Neben Bewegungseinschränkungen verursachen diese Sensoren häufig Hautreizungen und können schließlich zu einer Drucknekrose führen6,7,8,9,10,11.

Um die Entwicklung von Frühgeborenen zu fördern, wurden zahlreiche Anstrengungen unternommen, um nicht-invasive Überwachungs- und Diagnoselösungen zu entwickeln. Der Einsatz von Sensoren, die ohne Kabelverbindung, aber auf der Haut befestigt, eine Vielzahl von Vitalfunktionen überwachen können, wird in12,13 untersucht. Aktuelle Studien untersuchen zudem das Potenzial verschiedener berührungsloser Techniken für die nicht-invasive Diagnostik bei Kindern. Es werden Anstrengungen unternommen, pathologische Veränderungen in den Körperausscheidungen durch die Analyse flüchtiger organischer Verbindungen zu erkennen14,15. Es gibt Ansätze mit optischen Methoden, Pulsfrequenz und Sauerstoffsättigung ohne direkten Hautkontakt und Kabelverbindung zu überwachen, beispielsweise basierend auf dynamischer Lichtstreuung16, Video17 oder Photoplethysmographie18,19. Von großer Bedeutung für Frühgeborene ist auch die Diagnose von Atemwegserkrankungen und die Klassifizierung hinsichtlich periodischer Atmung und Apnoen20,21. Diese Aufgabe wird mithilfe verschiedener berührungsloser Techniken gelöst, die redundante Messungen verschiedener Vitalfunktionen erfordern, z. B. Atembewegung, Herzfrequenz, Sauerstoffsättigung oder Nasenatmung22,23,24.

Die kontaktlose Überwachung der kardiorespiratorischen Aktivität schränkt den Patienten weder ein noch hemmt sie, verringert Hygienerisiken und verursacht keine Beschwerden, Reizungen oder Hautschäden25,26. In diesem Zusammenhang haben sich Radargeräte bereits als vielversprechende Technologie erwiesen27,28,29, da sie von Natur aus stromsparend, kostengünstig und datenschutzfreundlich sind. Im Gegensatz zu kamerabasierten Systemen30,31 können Radarsignale verschiedene Materialien (wie Plexiglas, Kleidung, Matratzen und Decken) durchdringen und werden nicht durch Hautpigmentierung oder Umgebungslichtverhältnisse beeinflusst. Aufgrund der reduzierten Sendeleistung können diese Signale jedoch leicht im Hintergrundrauschen verschwinden oder durch stärkere externe Störungen, einschließlich Körperbewegungen des überwachten Patienten, maskiert werden32. Diese Interferenz stellt eine große Herausforderung für die genaue Schätzung sowohl bei kontaktlosen Lösungen als auch bei kabelgebundenen Geräten dar. Um zuverlässige und robuste Messungen zu gewährleisten, sind daher spezielle Signalverarbeitungstechniken erforderlich.

Jüngste Arbeiten33,34 haben gezeigt, dass ein Ultrabreitbandradar unter bestimmten Bedingungen zuverlässige Schätzungen der Atemfrequenz von Neugeborenen liefern kann. Diese Untersuchungen beschränkten sich jedoch auf ein einziges Szenario, bei dem die Neugeborenen immer in Rückenlage über einem Kinderbett im Freien lagen. Darüber hinaus wurde die Radarleistung nur bei minimalen Bewegungen der überwachten Patienten bewertet. In diesem Artikel gehen wir noch einen Schritt weiter, indem wir ein einfacheres Dauerstrichradargerät (CW) verwenden und Frühgeborene unter verschiedenen Szenarien untersuchen, die für die Routine auf der neonatologischen Intensivstation üblich sind, unabhängig vom Ausmaß der Bewegung oder externen Störungen. Die Spezifität der überwachten Patienten in einem realen klinischen Umfeld führt zu mehreren Herausforderungen, die durch unterschiedliche Beiträge im vorgeschlagenen Signalverarbeitungsrahmen angegangen wurden. Anstatt Messungen bei starker Interferenz einfach zu verwerfen33,34,35,36,37, präsentieren wir insbesondere eine neuartige Technik zur Abschwächung zufälliger Körperbewegungen, die auf der Zeit-Frequenz-Zerlegung des wiederhergestellten Signals basiert. Darüber hinaus schlagen wir einen einfachen und genauen Frequenzschätzer vor, der die harmonische Struktur des Atemsignals untersucht.

Die Aktivität des Herz-Kreislauf- und Atmungssystems hat einige physische und physiologische Auswirkungen auf den menschlichen Körper. Die Brustwand bewegt sich während des Inspirations-/Exspirationszyklus aufgrund der Bewegungen des Zwerchfells und der Interkostalmuskulatur. Diese kleine und periodische Verschiebung kann durch Radar erfasst werden und ermöglicht so eine genaue Schätzung der Atemfrequenz unter bestimmten Bedingungen. Abbildung 1a zeigt das grundlegende Funktionsprinzip eines CW-Radars. Das gesendete Signal breitet sich durch den freien Raum aus und erreicht jedes Objekt im Sichtfeld des Radars, wobei es mit zusätzlichen Phaseninformationen über die Position jedes Objekts zurückreflektiert wird. Das empfangene Signal kann somit als skalierte und zeitverschobene Version des gesendeten Signals modelliert werden, wobei die Phasenänderung über die Zeit wertvolle Informationen über die Szenenbewegung enthält. Diese zeitlich veränderliche Phase \(\theta (t)\) kann normalerweise wiederhergestellt werden als

Dabei ist \(\lambda\) die Betriebswellenlänge des Radars und d(t) das Verschiebungssignal, das im Idealfall nur der Bewegung der Brustwand aufgrund des Atmungsmechanismus entsprechen würde. Wie das Radar zeigt, wird diese Bewegung hauptsächlich durch die reflektierten Punkte über der sich bewegenden Oberfläche des Brustkorbs verursacht, sie kann jedoch je nach relativer Position des Patienten auch Restbewegungen vom Bauch, von den Seiten und vom Rücken umfassen. Bei gesunden Erwachsenen liegen die Standardamplituden für diese Bewegung zwischen 4 mm und 12 mm38, wobei die Atemfrequenz zwischen 5 und 25 Atemzügen pro Minute (bpm)39 variiert. Bei Frühgeborenen können diese Amplituden kleiner als 1 mm sein, während die durchschnittliche Atemfrequenz normalerweise 60 Schläge pro Minute erreichen kann40 und unter bestimmten Bedingungen bis zu 80 Schläge pro Minute ansteigen kann41.

Dauerstrichradar zur Atemüberwachung auf der neonatologischen Intensivstation. (a) Grundlegendes Funktionsprinzip. (b) Blockdiagramm der Signalverarbeitungskette. Vor der Schätzung werden die vom Analog-Digital-Wandler (ADC) empfangenen Signale phasendemoduliert und in der RBM-Abschwächungseinheit (Random Body Movements) weiterverarbeitet.

Eine perfekte Wiederherstellung der Brustwandbewegung d(t) würde eine präzise Schätzung der Atemfrequenz \(f_b\) durch einfache Analyse der Bewegungsperiodizität ermöglichen. In einer realen klinischen Umgebung ist das empfangene Radarsignal jedoch neben unvermeidbaren Hardwarefehlern in der Regel mit zusätzlichen Reflexionen aus der äußeren Umgebung vermischt, die nicht nur durch unterschiedliche Körperbewegungen des überwachten Patienten, sondern auch durch jedes sich bewegende Objekt in der Szene entstehen. Diese Störsignale sind normalerweise viel stärker als diejenigen, die durch die millimetergenaue Verschiebung der Brustwand hervorgerufen werden, und dies macht eine genaue Wiederherstellung und anschließende Schätzung der Atemfrequenz zu einer anspruchsvollen Aufgabe. Darüber hinaus stellen die verringerten Amplituden der Brustwandbewegung und der größere Bereich möglicher Atemfrequenzen bei der Betrachtung von Frühgeborenen eine zusätzliche Herausforderung bei der Signalverarbeitung im Vergleich zu früher berichteten Untersuchungen mit Erwachsenen dar.

Klinischer Aufbau. (a) Konventionelle Überwachung von Frühgeborenen: Anschluss über Kabel an die zentrale Überwachungseinheit (Herzfrequenz, Sauerstoffsättigung, Atmung) und ein zusätzlicher peripherer Venenkatheter. (b) Blick auf den Raum auf der neonatologischen Intensivstation. Sowohl das Radar als auch das kabelgebundene Referenzgerät wurden vom externen Computer aus gesteuert. (c) Draufsicht schließen. Das Radar war auf einem vibrationsarmen Stativ in 45 cm Entfernung vom Säugling befestigt. (d) Nahe Seitenansicht mit Zwillingen, die im selben Bett schlafen.

Die Studie wurde in der Abteilung für Pädiatrie des Universitätsklinikums des Saarlandes (Homburg, Deutschland) durchgeführt. Abbildung 2a zeigt ein Frühgeborenes, das mit der herkömmlichen Methode überwacht wird. Neben den an Brust und Bauch angebrachten Sensoren, die über Kabel mit der zentralen Überwachungseinheit (für Sauerstoffsättigung, Herzfrequenz und Atmung) verbunden sind, sind in diesem Stadium zusätzlich ein peripherer Venenkatheter und eine Magensonde erforderlich. Der klinische Aufbau, einschließlich des Neugeborenenbetts, des Radargeräts und des Referenzüberwachungssystems, ist in Abb. 2b–d dargestellt. Das Radar ist für den Betrieb im 24-GHz-ISM-Band (Industrie, Wissenschaft und Medizin) zertifiziert und wurde außerhalb des Feldbetts installiert, befestigt an einem vibrationsarmen Stativ. Der relative Abstand zum überwachten Säugling betrug etwa 45 cm bis 50 cm. Aufgrund der inhärenten Fähigkeiten des Radars waren keine Änderungen an der Liegestruktur erforderlich und die Kunststoffabdeckung konnte während der Messungen geschlossen bleiben. In Abb. 2d teilen sich Zwillinge das gleiche Bett, wobei nur einer kontaktlos überwacht wird. Das Zusammenbetten von Zwillingen ist ein gängiges Verfahren auf der neonatologischen Intensivstation. Mehrere Studien berichten von physiologischen Vorteilen für die Säuglinge42,43.

Insgesamt wurden 12 Frühgeborene in die Studie einbezogen. Die Ergänzungstabelle 1 zeigt eine Zusammenfassung der Patienteninformationen. Sie wurden auf der Grundlage medizinischer Gutachten und unter Berücksichtigung der medizinischen Sicherheit der Teilnahme an der Studie ausgewählt. Die Messungen wurden bei jedem Säugling an drei verschiedenen Tagen jeweils mittags (nach dem Füttern) über einen Zeitraum von 25 Minuten durchgeführt. Ihre natürliche Position wurde bei jeder Messung nicht verändert. Neben der Rückenlage (mit der Brust zum Radar gerichtet), der Bauchlage (mit dem Rücken zum Radar gerichtet) und der Seitenlage haben wir auch Co-Betting-Fälle untersucht, bei denen nur ein Säugling kontaktlos überwacht wurde. Die Idee bestand darin, die unterschiedlichen Auswirkungen bei der Erfassung von Radardaten von Brust/Bauch und Rücken zu untersuchen. Außerdem, ob die Überwachung von Zwillingen möglich ist und wie groß der sichere Abstand (im Hinblick auf Radarstörungen) zwischen ihnen wäre. Das Grundprinzip des Datenerfassungsprotokolls bestand darin, einen reibungslosen Betrieb auf der neonatologischen Intensivstation sicherzustellen. Eine detaillierte Beschreibung der Protokolle des Patienten finden Sie in den Ergänzungstabellen 2a–d, einschließlich aller Eingriffe und zusätzlicher Transienten, die während der Messungen manuell kommentiert wurden.

Abbildung 1b zeigt das grundlegende Blockdiagramm der Signalverarbeitungskette. Der erste Signalverarbeitungsschritt für CW-Systeme wird allgemein als Phasendemodulation bezeichnet. Dabei handelt es sich im Wesentlichen um den Prozess, bei dem die empfangenen Inphase- und Quadratursignale (I und Q) vom Analog-Digital-Wandler (ADC) des Radars mit dem Ziel kombiniert werden, das Verschiebungssignal d(t) wiederherzustellen. Die beiden am häufigsten verwendeten Methoden sind die Arcustangens-Demodulation (AD)44 und die komplexe Signaldemodulation (CSD)45. Während der AD eine präzise Wiederherstellung der Brustwandbewegung ermöglicht, reagiert er äußerst empfindlich auf die Hardwarekalibrierung sowie auf das Vorhandensein von DC-Offsets, Rauschen und externen Störungen. Der CSD ist gegenüber diesen Effekten robuster, beruht jedoch auf kleinen Verschiebungen, um eine Annäherung an die Atembewegung wiederherzustellen (siehe Methoden).

Abbildung 3 zeigt Beispiele der wiederhergestellten Atembewegung aus Radardaten im Vergleich zur tatsächlichen (Referenz-)Verschiebung, die vom kabelgebundenen Gerät erfasst wurde. Um die Verschiebung der Brustwand genau zu rekonstruieren, wählten wir zunächst „saubere“ Datensegmente (keine externe Störung) aus und verwendeten in beiden Fällen die AD. Während Abb. 3a ein normales Atemmuster in Rückenlage zeigt, zeigt Abb. 3b das Auftreten des Cheyne-Stokes-Atemmusters (periodisch)46, wobei sich das Kind in Bauchlage befindet. Diese spezielle Form der Atmung kommt physiologischerweise bei Neugeborenen vor und ist durch eine zyklische Variation zwischen Hyperpnoe und Hypopnoe47,48,49 definiert, dh sich wiederholende kurze Zyklen von Pausen und Atemzügen. Trotz geringer Unterschiede zwischen den gewonnenen Radarsignalen und dem Referenzgerät ist die periodische Atembewegung in beiden Fällen noch deutlich zu erkennen. Die kleinen Amplituden der Brustwandbewegung können ebenfalls visualisiert werden, mit Verschiebungen um etwa 2 mm in Rückenlage und 0,5 mm in Bauchlage. Diese Amplituden liegen deutlich unter den typischen Werten für Erwachsene, die in früheren Untersuchungen angegeben wurden50,51,52.

Wiederhergestellte Brustwandbewegung mit unterschiedlichen Atemmustern. (a) Normales Atemmuster unter guten Bedingungen (keine Beeinträchtigung). (b) Periodisches (Cheyne-Stokes) Atemmuster. (c) Normales Atemmuster, beeinträchtigt durch externe Störungen und ADC-Sättigung. (d–f) Näherung mit dem CSD. (g–i) Spektrum im Vergleich von AD und CSD.

Die mit dem CSD erhaltene angenäherte Atembewegung ist in Abb. 3d, e dargestellt. Trotz deutlicher Unterschiede im Vergleich zum AD zeigen Abb. 3g, h, dass beide Techniken Signale mit der gleichen Grundfrequenz liefern, die der durchschnittlichen Atemfrequenz entspricht. Angesichts der kleinen Verschiebungen, die wir erkennen wollen, und der herausfordernden Bedingungen dieser realen klinischen Umgebung wurde der CSD in unsere Lösung für die Langzeitüberwachung übernommen. Auch die harmonische Struktur des Atemsignals lässt sich visualisieren, wobei die zweite Harmonische deutlich erkennbar ist. Diese harmonische Struktur kann zur Verbesserung der Schätzung genutzt werden, wie wir später zeigen werden. Wie in Abb. 3c, f, i dargestellt, gelingt es beiden Demodulationsmethoden jedoch nicht, die Brustwandbewegung unter externen Störungen und eventueller ADC-Sättigung zu rekonstruieren. Das Spektrum wird von den Interferenzkomponenten dominiert, die dann eine genaue Schätzung der Atemfrequenz verhindern. Daher ist eine zusätzliche Verarbeitung erforderlich, um diese Effekte abzuschwächen.

Die meisten Untersuchungen zur kontaktlosen Überwachung der Vitalfunktionen mit Radarsensoren konzentrieren sich auf die Installation einer einzelnen Person unter idealen bewegungslosen Bedingungen53. In praktischen Überwachungssituationen bewegt die Testperson häufig Körperteile wie Hände, Beine oder Rumpf und sogar den gesamten Körper. Diese unerwünschten, aber unvermeidlichen Bewegungen werden üblicherweise als zufällige Körperbewegungen (RBM) bezeichnet. Die Amplitude ihrer reflektierten Signale ist oft viel stärker als die millimetergroße Atembewegung, die möglicherweise durch diese Interferenz maskiert wird. Da spontane RBM unvermeidlich sind, ist die Lösung dieses Problems von grundlegender Bedeutung für die zuverlässige Erkennung von Vitalzeichen in praktischen Anwendungen.

Es wurden bereits mehrere Methoden zur Eindämmung von RBM vorgeschlagen54, und auch wenn bestimmte Arten von Bewegungen effektiv aufgehoben werden könnten, erfordern sie in der Regel komplexere Systeme. Die meisten Lösungen basieren auf zusätzlicher oder duplizierter Hardware und unterliegen daher praktischen Einschränkungen wie Fehlausrichtung, Synchronisierung und Kosten45,55,56. Eine andere Forschungsrichtung versucht grundsätzlich, Segmente von Vitalzeichendaten mit RBM zu identifizieren und diese beschädigten Segmente vor der Schätzung einfach zu verwerfen33,34,35,36,37. Abhängig von der Dauer des Verarbeitungsfensters beeinträchtigt jedoch selbst ein sehr kurzes RBM mehrere Sekunden gutes Signal. Anstatt einfach Datensegmente zu verwerfen, ist daher ein Ansatz wünschenswert, der eine sinnvolle Nutzung dieser Episoden mit moderatem RBM ermöglicht. Jüngste Arbeiten haben damit begonnen, RBM mit einem einzigen Sensor und in anspruchsvolleren Szenarien anzugehen32. Dennoch wird die experimentelle Validierung immer noch in kontrollierten Situationen durchgeführt, wobei RBM durch vordefiniertes Verhalten emuliert wird, was zu begrenzten Interferenzen mit dem gewünschten Signal führt.

Nehmen wir zunächst an, dass RBM spärlich sind, das heißt, sie kommen nicht häufig vor und wenn sie auftreten, ist ihre Dauer im Verhältnis zum beobachteten Zeitfenster gering. Dies steht im Gegensatz zur konstanten und periodischen Natur der Atembewegung. Darüber hinaus sind ihre Amplituden normalerweise viel stärker als das Standard-Atemsignal. Diese spezifischen Zeit- und Frequenzmerkmale sind im Spektrogramm des wiederhergestellten Signals vorhanden und können analysiert werden, um diese Störung zu identifizieren und möglicherweise zu beseitigen. Um dieses Problem anzugehen, verwenden wir die nichtnegative Matrixfaktorisierung (NMF)57,58, eine Matrixzerlegungstechnik, die normalerweise zum Extrahieren von Merkmalen aus einem Satz nichtnegativer Daten verwendet wird. Wenn x(t) (Abb. 1b) das wiederhergestellte Signal ist, das die Brustwandbewegung und eventuelle RBM-Interferenzen enthält, kann sein Größenspektrogramm \(|{{\varvec{X}}}|\) über die Kurzzeit ermittelt werden Fourier-Transformation (STFT) von x(t). Das NMF zerlegt dann \(|{{\varvec{X}}}|\) als

wobei die Matrizen \({{\varvec{H}}}\) und \({{\varvec{W}}}\) jeweils die zugehörigen Zeit- und Frequenzbasiskomponenten von \(|{{\varvec{ X}}}|\), wobei K eine vordefinierte Basiszahl ist. Mit anderen Worten kann \({{\varvec{W}}}\) als die Menge der Frequenzvorlagen von \(|{{\varvec{X}}}|\ angesehen werden, während \({{\varvec {H}}}\) enthält die Zeitinformationen im Zusammenhang mit der Aktivierung dieser Vorlagen. Wenn wir uns die Zeitaktivierungsmatrix \({{\varvec{H}}}\ ansehen, zeigen die Basiskomponenten mit spärlichem Verhalten und höheren Amplituden oft die Epochen an, in denen die RBM-Interferenz vorhanden ist. Trotz des unvorhersehbaren Frequenzspektrums, das sich schließlich mit den Atemfrequenzen überlappen wird, kann das RBM-spezifische Zeitverhalten durch die NMF-Zeitaktivierungsbasen \({{\varvec{H}}}\ erfasst werden, wohingegen die entsprechenden Basen in \({ {\varvec{W}}}\) behält seinen Frequenzinhalt. Dies ermöglicht im Vergleich zu Standard-Spektralanalysemethoden zusätzliche Flexibilität beim Filtern der RBM-Interferenz. Wir können somit das gefilterte Spektrogramm \(\hat{|{{\varvec{X}}}|}\ rekonstruieren, indem wir einfach alle \({{\varvec{w}}}_i {{\varvec{ h}}}^{\mathrm{T}}_i\) Matrizen, mit Ausnahme derjenigen, die die störenden Komponenten enthalten.

NMF zur Abschwächung zufälliger Körperbewegungen. (a) I- und Q-Abtastwerte des Verschiebungssignals x(t), verfälscht durch RBM. (b) Normalisiertes Spektrogramm \(|{{\varvec{X}}}|\). Die RBM-Interferenz dominiert eindeutig das Spektrum und würde die Schätzung gefährden. (c) NMF-Zerlegung in die Frequenzbasiskomponenten in \({{\varvec{W}}}\). (d) NMF-Zerlegung in die Zeitbasiskomponenten in \({{\varvec{H}}}\). (e) RBM-gefiltertes Spektrogramm \(\hat{|{{\varvec{X}}}|}\). (f) I- und Q-Abtastwerte des RBM-gefilterten Zeitsignals \({\hat{x}}(t)\). (g) Bandpassspektrum der ursprünglichen und RBM-gefilterten Signale.

Abbildung 4a zeigt zur Veranschaulichung ein 60-s-Verarbeitungsfenster, in dem das wiederhergestellte Signal x(t) (nach CSD) durch Segmente von RBM verfälscht wird, mit seinem normalisierten Spektrogramm \(|{{\varvec{X}}}|\ ) in Abb. 4b. Im Fall des CSD wird das Spektrogramm auf der Grundlage der komplexen Abtastwerte des wiederhergestellten Signals x(t) berechnet und berücksichtigt daher sowohl I- als auch Q-Kanäle gleichzeitig. Die NMF-Zerlegung in \(K=11\) Frequenz- (\({{\varvec{W}}}\)) und Zeitbasiskomponenten (\({{\varvec{H}}}\)) ist in Abb. dargestellt .4c,d, wobei jede Farbe ein Paar Basiskomponenten darstellt, mit dem Frequenzinhalt in Abb. 4c und der entsprechenden Zeitaktivierung in Abb. 4d. Es ist ersichtlich, dass die RBM-Interferenz aufgrund ihrer zufälligen Natur Frequenzkomponenten aufweist, die über das gesamte Spektrum verteilt sind und sich mit dem Atemfrequenzbereich überlappen (siehe beispielsweise die grünen und blauen Basen). Während in \({{\varvec{W}}}\ eine Vielzahl von Frequenzen visualisiert werden kann, können die spärlichen und starken Basen, die RBM entsprechen, in \({{\varvec{H}}}\) klar identifiziert werden ( siehe bitte Methoden). Das Entfernen der ausgewählten Basen ermöglicht die Rekonstruktion des gefilterten Spektrogramms in Abb. 4e, wo nun die zeitliche Variation der Atemfrequenz (ca. 45 Schläge pro Minute) erkennbar ist. Nach der inversen STFT ist das RBM-gefilterte Zeitsignal in Abb. 4f dargestellt. Schließlich zeigt Abb. 4g das Bandpassspektrum sowohl des ursprünglichen als auch des RBM-gefilterten Signals. Die entsprechenden erkannten Werte werden jeweils mit der blauen und roten Markierung hervorgehoben. Die gestrichelte schwarze Linie zeigt den Referenzwert für die durchschnittliche Atemfrequenz, die diesem Verarbeitungsfenster zugeordnet ist. Aufgrund der starken RBM-Interferenz würde der Maximalwert des ursprünglichen Spektrums eine falsche Atemfrequenz von 52,1 Schlägen pro Minute anzeigen, was sehr weit vom wahren Wert von 42 Schlägen pro Minute entfernt wäre. Nach der RBM-Filterung mit dem NMF zeigt das modifizierte Spektrum einen näheren Wert von 42,4 Schlägen pro Minute an, wobei der Schätzfehler nur 0,4 Schläge pro Minute betragen würde.

Für die Darstellung der Hin- und Her-Atembewegung d(t) wurden bereits verschiedene Modelle vorgeschlagen, von einfachen sinusförmigen Näherungen59,60 bis hin zu komplizierteren Mustern, wie in38,61 beschrieben. Die Atembewegung ist ein komplexes Phänomen, das unterschiedliche Bewegungsmuster umfasst, nicht nur von der Brustwandoberfläche, sondern auch von Bauch, Schultern und Rücken62,63. Daher ist es schwierig, Zeitbereichsmodelle zu identifizieren, die es für jedes Thema und jedes Überwachungsszenario vollständig und auf robuste Weise charakterisieren. Aufgrund der inhärenten periodischen Natur der Atmung kann jedoch jede Funktion, die diese Bewegung darstellt, schließlich in Fourier-Terme zerlegt werden, die die Grundfrequenz und Harmonische enthalten, die den Atemfrequenzen entsprechen, die wir schätzen möchten. Daher kann das Verschiebungssignal als Summe harmonisch verwandter komplexer Sinuskurven modelliert werden, deren Frequenzen ganzzahlige Vielfache der Grundatemfrequenz sind. Um diese harmonische Struktur besser auszunutzen, schlagen wir in diesem Abschnitt einen einfachen und genauen nichtlinearen Schätzer der kleinsten Quadrate (NLS) vor64, der für große Verarbeitungsfenster selbst in Szenarien mit farbigem Rauschen asymptotisch effizient ist65.

Zunächst wird das RBM-gefilterte Verschiebungssignal \({\hat{x}}(t)\) unter Verwendung eines Bandpass-Kaiser-Fensters (\(\beta = 6,5\)), von 0,3 Hz bis 3 Hz (\(18-180\) bpm). Dies entspricht dem physiologischen Bereich der Atemfrequenzen, einschließlich möglicher Harmonischer. Das bandpassgefilterte Signal \({\hat{d}}(t)\) stellt im Idealfall eine genaue Annäherung an die tatsächliche Brustwandbewegung d(t) dar (Abb. 1) und kann schließlich zur Schätzung der Atemfrequenz verwendet werden.

Vor der Schätzung berechnen wir zur Verbesserung des Signal-Rausch-Verhältnisses (SNR)66,67,68 die Autokorrelationsfunktion r(t) des bandpassgefilterten Signals. Die Schätzung wird zunächst im Zeitbereich direkt über dem autokorrelierten Signal durchgeführt. Eine anfängliche (grobe) Schätzung wird durch einen Peak-Erkennungsalgorithmus erhalten, wobei der Zeitabstand zwischen Peaks eine Schätzung der Zeit zwischen den einzelnen Atemzügen liefert. Schließlich können erkannte Peaks ausgeschlossen werden, wenn der Abstand zu ihren Nachbarn einer Frequenz außerhalb des erwarteten physiologischen Bereichs entspricht. Die anfängliche Atemfrequenz wird somit als Kehrwert der Zeit zwischen ausgewählten Spitzen berechnet, gemittelt über das gesamte Verarbeitungsfenster. Diese anfängliche Schätzung wird verwendet, um den NLS-Algorithmus zu vereinfachen.

Der folgende Schritt besteht darin, die NLS-Frequenzschätzungen \({\hat{\omega }}\) zu berechnen, die durch Maximierung der Ähnlichkeit zwischen \({\hat{d}}(t)\) und dem Verschiebungssignalmodell erhalten werden in (12). Unter bestimmten Bedingungen (siehe Methoden) kann die Lösung dieses Problems (die resultierende Kostenfunktion in (17)) mithilfe einer schnellen Fourier-Transformation (FFT) und einem linearen Gittersuchalgorithmus69 effizient implementiert werden, wobei der Schätzer auf reduziert wird eine Summierung der Atemharmonischen über die spektrale Leistungsdichte von \({\hat{d}}(t)\). Die anfängliche Zeitbereichsschätzung wird verwendet, um den Suchbereich einzuschränken und so stärkere niederfrequente Komponenten zu vermeiden, die in realen Daten möglicherweise noch vorhanden sind. Diese Strategie reduziert auch den Rechenaufwand zur Durchführung der Rastersuche.

Die ersten Messungen wurden verwendet, um den idealen Abstand zwischen Radar und dem überwachten Säugling festzulegen (ergänzende Abbildung 1). Von insgesamt 30 Messungen an der eingestellten Position (ca. 45 cm) wurden 3 aufgrund von Aufzeichnungsproblemen mit den Geräten ausgeschlossen. Die übrigen Sequenzen wurden unter Verwendung von Schiebefenstern von 30 Sekunden mit einer Überlappung von 28 Sekunden verarbeitet, was alle 2 Sekunden zu aktualisierten Atemfrequenzschätzungen führte. Dies führte zu etwa 20.250 Schätzungen aus 675 Minuten analysierter Daten. Die Messungen erfolgten unabhängig vom Ausmaß der Bewegung oder äußeren Einflüssen. Die Sequenzen umfassen Momente mit Schluckauf, Gähnen, Weinen, Grunzen, periodischem Atmen sowie zusätzliche Bewegungen aus dem Raum der neonatologischen Intensivstation, z. B. medizinische Eingriffe und Besucher (Ergänzungsdatei 3). Die gesamte Datenverarbeitung wurde mit Matlab70 durchgeführt.

Abbildung 5 zeigt Beispiele für I- und Q-Abtastwerte vom ADC des Radars, die geschätzten Atemfrequenzwerte und die Referenzwerte vom kabelgebundenen Gerät. In Abb. 5a schlief das überwachte Kind ruhig in Rückenlage und während der gesamten Messung war eine Krankenschwester im Raum der neonatologischen Intensivstation anwesend, 2,5 Meter vom Baby entfernt. Diese Bedingungen führten zu guten Radarmessungen mit geringer Interferenz. Andererseits zeigt Abb. 5b ein Beispiel, bei dem der Säugling in Bauchlage lag. In diesem Fall können mehrere Abschnitte starker Interferenz in den I/Q-Eingangsdaten visualisiert werden. Neben dem sich frei bewegenden und grunzenden Säugling war ab Minute 9 auch eine Krankenschwester bei dieser Messung anwesend. Abbildung 5c ​​entspricht einem der Zwillingsfälle. Etwa in der dritten Minute wurde ein direkter Eingriff am überwachten Säugling zur Befestigung des Sauerstoffsättigungssensors registriert. Der zweite Zwilling schlief während der gesamten Messung ruhig. Der Abstand zwischen ihnen betrug etwa 20 cm. Abbildung 5d zeigt ein weiteres Beispiel einer stark gestörten Sequenz, bei der sich das überwachte Kind ständig bewegte und von der Mutter begleitet wurde, die nur einen Meter entfernt war. In diesem Fall können lange Abschnitte starker Interferenz (und eventueller ADC-Sättigung) visualisiert werden.

Radareingabedaten und geschätzte Atemfrequenz. Alle Sequenzen wurden mit der vollständigen vorgeschlagenen Lösung (NLS+NMF) verarbeitet und stellen jeweils ein anderes Überwachungsszenario dar. (a) Einzelnes Kleinkind in Rückenlage (Brust zum Radar gerichtet). (b) Einzelnes Kleinkind in Bauchlage (mit dem Rücken zum Radar gerichtet). (c) Zwillinge im selben Bett mit einem Abstand von 20 cm, wobei sich das überwachte Kind in Bauchlage befindet. (d) Stark gestörte Sequenz.

Wichtig ist, dass bei der Bewegung der Babys auch ein hoher Sättigungsgrad in den Eingabedaten des Referenzgeräts beobachtet wurde. Während der Sättigung begrenzt der ADC das Eingangssignal auf die maximal zulässige Stärke und erzeugt so Segmente mit konstanter Amplitude, die den Niederfrequenzanteil des aktuellen Verarbeitungsfensters erhöhen. Diese Einschränkung führt zu einem schnellen Abfall der Referenz-Atemfrequenzwerte (Täler), gefolgt von einer sofortigen Erholung auf die korrekten Werte unmittelbar nach Ende der Sättigung (diese Täler sind in Abb. 5b, d hervorgehoben). Dieses anomale Verhalten hängt nicht mit einem physiologischen Muster zusammen und weist darauf hin, dass das Referenzgerät in diesen Momenten nicht zuverlässig ist. Folglich haben wir zur Berechnung der Leistungsmetriken nur die Verarbeitungsfenster berücksichtigt, die nicht gesättigten Datensegmenten des Referenzgeräts entsprechen. Dies führte zu 18 gültigen Messungen und etwa 4.964 gültigen Atemfrequenzschätzungen. Die Messungen aus der Seitenposition führten zu einem niedrigen SNR und unzuverlässigen Schätzungen, die ebenfalls verworfen wurden. Andererseits wird die Radarsättigung als mit dem Messaufbau inhärent angesehen. Daher werden Radardatensegmente mit gesättigten I- und/oder Q-Abtastwerten als gültig betrachtet und verarbeitet.

Eine Zusammenfassung der erhaltenen Ergebnisse ist in Abb. 6 dargestellt. Abbildung 6a–d zeigt die endgültige durchschnittliche Genauigkeit (3, 6 und 10 Schläge pro Minute) in jedem der untersuchten Szenarien, nämlich: (a) Rückenlage (11 Messungen), (b) Bauchlage (7 Messungen), (c) einzelnes Kleinkind im Wärmebett (14 Messungen) und (d) Zwillinge, die dasselbe Bett teilen (4 Messungen). Diese Szenarien sind nicht exklusiv. Zu den Szenarien in Rücken- und Bauchlage zählen Einzel-/Zwillingsfälle und umgekehrt. Die Balken vergleichen die Leistung von drei verschiedenen Algorithmen: (1) konventionelle Schätzung unter Verwendung der Diskreten Fourier-Transformation (DFT)71,72,73, die den Benchmark darstellt; (2) die vorgeschlagene NLS-Schätzung (NLS); und (3) die vollständige vorgeschlagene Lösung (NLS+NMF), einschließlich des NMF-basierten RBM-Abschwächungsalgorithmus. In allen Fällen wurden die gleichen Vorverarbeitungsschritte (Phasendemodulation und Bandpassfilterung) verwendet. Die Genauigkeit wird als Prozentsatz der Zeit (in Bezug auf gültige verarbeitete Fenster) berechnet, während der die endgültige Schätzung des Radars innerhalb eines vordefinierten Fehlerintervalls liegt. Für jeden Fall wurde die Genauigkeit von 3, 6 und 10 Schlägen pro Minute berücksichtigt. Eine Genauigkeit von 80 % bei 6 Schlägen pro Minute bedeutet beispielsweise, dass die Größe des Fehlers zwischen der Radarschätzung und dem Referenzgerät in 80 % der Zeit kleiner als 6 Schläge pro Minute war.

Zusammenfassung der Ergebnisse unter Berücksichtigung aller verarbeiteten Sequenzen für jedes Szenario und Vergleich verschiedener Techniken: Standard-DFT-Schätzung (DFT), die vorgeschlagene NLS-Schätzung (NLS) und die vollständige vorgeschlagene Lösung mit RBM-Abschwächung (NLS+NMF). Durchschnittliche Genauigkeit für verschiedene Techniken. (a) Rückenlage. (b) Bauchlage. (c) Einzelnes Kleinkind im Kinderbett. (d) Zwillinge teilen sich das Kinderbett. (e) Durchschnittliche Genauigkeit für verschiedene Szenarien unter Berücksichtigung der vollständigen vorgeschlagenen Lösung (NLS+NMF). (f) Durchschnittlicher RMSE für verschiedene Szenarien und verschiedene Techniken.

Es ist ersichtlich, dass die vorgeschlagenen Techniken in allen Fällen eine wesentliche Verbesserung mit einer Steigerung von bis zu 17 % und einer maximalen Genauigkeit von 6 und 10 Schlägen pro Minute von 79,3 % bzw. 93,1 % in Bauchlage brachten. Abbildung 6e vergleicht direkt die Leistung der gesamten vorgeschlagenen Lösung in jedem Szenario, einschließlich des durchschnittlichen Ergebnisses aller verarbeiteten Sequenzen. Ein interessantes Ergebnis hängt mit der Tatsache zusammen, dass die Bauchlage im Durchschnitt die besten Ergebnisse lieferte, obwohl die nachgewiesenen Verschiebungen im Rückenbereich geringer waren als im Brust-/Bauchbereich. Dies könnte an der gleichmäßigeren Atembewegung der hinteren Brustwand liegen, da die Verknöcherung der Rippen hinten beginnt. Aufgrund der höheren Flexibilität der vorderen Brustwand führen Bauch- und Brustbewegungen zu einer heterogeneren Bewegung, wodurch die Radarschätzung schwieriger wird. Darüber hinaus kann die Bauchlage zu reduzierten Körperbewegungen und damit zu weniger Störungen führen. Schließlich lieferten Einzel- und Zwillingsfälle im Durchschnitt ähnliche Ergebnisse, was darauf hindeutet, dass ein zweites Kind im Kinderbett möglicherweise keinen direkten Einfluss auf die Radarleistung hat.

Der mittlere quadratische Fehler (RMSE) jeder Sequenz wurde ebenfalls berechnet, und die Durchschnittswerte für jedes Szenario sind in Abb. 6f dargestellt, wobei die vorgeschlagenen Techniken mit der herkömmlichen DFT-Schätzung verglichen werden. Der RMSE ist definiert als

wobei \(B_n\) und \(\hat{B_n}\) jeweils die Referenz- und die geschätzte Atemfrequenz (in Schlägen pro Minute) im \(n^{\mathrm{th}}\)-Verarbeitungsfenster darstellen. Es ist ersichtlich, wie die vorgeschlagene Lösung den Standardansatz übertrifft, indem sie eine signifikante und robuste Verbesserung gegenüber den verschiedenen Szenarien bietet und den RMSE in allen Fällen reduziert. Der Gesamt-RMSE unter Berücksichtigung aller gültigen Messungen betrug 6,38 Schläge pro Minute. Die Messungen in Bauchlage ergaben die beste Leistung mit einem RMSE nahe 5 Schlägen pro Minute. Ergänzende Datei 4 zeigt die Bland-Altman-Analyse unter Berücksichtigung aller Szenarien und vergleicht auch die Standard-DFT-Schätzung und die vollständige vorgeschlagene Lösung.

Die Leistung kann auch nur unter Berücksichtigung der Momente ohne RBM oder zumindest mit reduzierter externer Beeinflussung analysiert werden. Um diese Momente zu identifizieren, können wir den RBM-Abschwächungsalgorithmus verwenden und nach Verarbeitungsfenstern suchen, in denen keine störenden Komponenten durch die Zeitaktivierungsbasen \({{\varvec{H}}}\ erfasst wurden. Angesichts der Tatsache, dass Störgeräusche oder zusätzliche Frequenzkomponenten möglicherweise als RBM identifiziert und herausgefiltert werden, haben wir diejenigen als „minimale Bewegungsfenster“ akzeptiert, in denen maximal zwei Basen vom Algorithmus ausgeschlossen wurden. Abbildung 7 zeigt die erzielte Leistung nur unter Berücksichtigung dieser Momente. Die durchschnittliche Genauigkeit von 10 Schlägen pro Minute lag bei allen Messungen über 97 %, wobei die Genauigkeit von 6 Schlägen pro Minute in allen Szenarien über 80 % lag. Der durchschnittliche RMSE betrug 4,3 Schläge pro Minute, wobei das beste Ergebnis bei etwa 4 Schlägen pro Minute in Bauchlage lag. In diesem Fall zeigten alle Szenarien eine sehr ähnliche Leistung, sowohl hinsichtlich der Genauigkeit als auch des RMSE. Der Prozentsatz minimaler Bewegungsfenster in Bauchlage war fast doppelt so hoch wie in Rückenlage. Dieser Unterschied bestätigt möglicherweise, dass die Bauchlage zu weniger zufälligen Körperbewegungen führt, und dies ist einer der Gründe für die besseren Ergebnisse in diesem Szenario.

Dieser verbleibende RMSE wird erwartet und kann erklärt werden, wenn wir den Frühzustand der überwachten Säuglinge berücksichtigen (Ergänzungstabelle 1), bei dem die Unreife ihres Atmungssystems und die diagnostizierten Zustände zu unregelmäßigen Atemmustern führen und somit die Schätzung behindern können. Darüber hinaus werden einige Transienten aufgrund ihrer spezifischen Eigenschaften möglicherweise nicht als RBM erkannt, was möglicherweise nicht mit unserer Annahme von Stärke und Spärlichkeit übereinstimmt (z. B. periodischer Schluckauf oder andere kontinuierliche Bewegungen). Schließlich ist auch mit einer gewissen Ungenauigkeit des Referenzgeräts zu rechnen, da diese Sensoren (siehe Methoden) unter Ungenauigkeiten und Herzstörungen leiden, insbesondere bei Neugeborenen mit höheren Atemfrequenzen und eingeschränkter Lungenbelüftung34,74.

Durchschnittliche Leistung bei minimalen Bewegungsfenstern. (a) Genauigkeit für verschiedene Szenarien. (b) Durchschnittlicher RMSE für verschiedene Szenarien.

Die vorgeschlagene Radar-basierte Lösung war in der Lage, die Bewegung der Brustwand präzise wiederherzustellen und so eine klare Identifizierung verschiedener Atemmuster zu ermöglichen. Diese Fähigkeit ist der erste Schritt zur Schätzung der Atemfrequenz und zur frühen nicht-invasiven Diagnose von Atemproblemen bei Neugeborenen. Darüber hinaus lieferten die vorgeschlagenen Algorithmen in den meisten Fällen zuverlässige Schätzungen der Atemfrequenz und reduzierten so wirksam die Auswirkungen der RBM-Störung. Die beste Leistung wurde erzielt, wenn sich die Säuglinge in Bauchlage befanden, wobei die Genauigkeit bei 6 und 10 Schlägen pro Minute fast 80 % bzw. 93 % erreichte. Der Gesamt-RMSE war kleiner als 7 Schläge pro Minute, wobei das beste Ergebnis bei etwa 5 Schlägen pro Minute in Bauchlage lag. Bei minimalen Bewegungen lag die Gesamtgenauigkeit bei 10 Schlägen pro Minute über 97 %, wobei die Genauigkeit bei 6 Schlägen pro Minute in allen Szenarien über 80 % lag. Der durchschnittliche RMSE betrug 4,3 Schläge pro Minute, wobei das beste Ergebnis bei etwa 4 Schlägen pro Minute in Bauchlage lag. Diese Ergebnisse können als Grundsatzbeweis dafür interpretiert werden, dass der vorgeschlagene Radar-basierte Ansatz das Potenzial für eine kontaktlose Atemüberwachung auf der neonatologischen Intensivstation hat. Es laufen jedoch weitere Experimente, um die Anfälligkeit für Artefakte weiter zu verringern, beispielsweise durch den Einsatz optimierter Algorithmen der Datenverarbeitung und redundanter Technologien.

Eine feinere Radarkalibrierung und eine präzisere Setup-Anpassung würden die Qualität der Rohdaten verbessern und die ADC-Sättigung verringern. Eine weitere Verbesserung der Eingangsdaten des Radars kann noch durch die Umstellung von CW auf Architekturen mit mehreren Eingängen und mehreren Ausgängen (MIMO) und frequenzmodulierten Dauerstricharchitekturen (FMCW) erreicht werden. Diese Änderung würde nicht nur eine Entfernungsisolierung von externen Störungen ermöglichen, sondern auch die direkte Ausrichtung des Radarstrahls (Sichtfelds) auf den überwachten Patienten ermöglichen. Die Bewegungsrobustheit kann noch verbessert werden, indem der NMF-Algorithmus entsprechend den spezifischen Eigenschaften des Störsignals für zufällige Körperbewegungen angepasst wird. Ein besonderer Fall von Interesse wäre das spärliche NMF.

Schließlich würden Folgestudien mit reiferen und gesünderen Kindern unterschiedlichen Alters es ermöglichen, Pathologien, altersspezifische Merkmale oder Störfaktoren zu identifizieren und das Versuchsdesign entsprechend anzupassen. Die besten durchschnittlichen Ergebnisse, die in Bauchlage erzielt wurden, deuten darauf hin, dass zusätzliche Untersuchungen an verschiedenen klinischen Aufbauten erforderlich sind, bei denen das Radar auch unter der Matratze positioniert werden könnte. Darüber hinaus ist mit dem Ziel, eine vollständige kontaktlose Lösung zu entwickeln, eine Untersuchung der Radarfähigkeiten zur Herzfrequenzüberwachung in dieser anspruchsvollen Umgebung sowie der Übergang zur Echtzeitverarbeitung erforderlich.

Notation. Wir übernehmen die folgende Schreibweise: Kleinbuchstaben fett für Vektoren \({{\varvec{x}}}\) und Großbuchstaben fett für Matrizen \({{\varvec{X}}}\). Der Buchstabe \(\mathrm j\) stellt die imaginäre Einheit dar (d. h. \({\mathrm{j}} = \sqrt{-1})\), wobei die Absolutwert- und Winkeloperatoren durch die Symbole \(|) gegeben sind (\cdot )|\) und \(\angle (\cdot )\). Die Operatoren Transponieren, Konjugieren und Konjugieren Transponieren werden jeweils durch die Symbole \((\cdot )^{\mathrm{T}}\), \((\cdot )^*\) und \((\cdot ) bezeichnet. ^{{\mathrm{H}}}\). Die Mengen N-dimensionaler Vektoren komplexer und reeller Zahlen werden durch \({\mathbb {C}}^N\) und \({\mathbb {R}}^N\) dargestellt. Die euklidische Norm des Vektors \({{\varvec{x}}}\) wird mit \(||{{\varvec{x}}}||\) bezeichnet. Das Hadamard-Produkt wird mit \(\odot\) bezeichnet.

Ethik-Erklärung. Die Studie wurde in Übereinstimmung mit der Deklaration von Helsinki konzipiert und von der regionalen Ethikkommission des Saarlandes (Saarbrücken, Deutschland) mit der Referenznummer 276/17 genehmigt. Vor der Datenerhebung wurde eine schriftliche Einverständniserklärung der Eltern eingeholt und alle Unterlagen und gesammelten Daten wurden pseudonymisiert.

Radarsystem. Das in dieser Studie verwendete CW-Radargerät ist eine Prototypvariante des VitaSense\(^\text{\textregistered }\)-Sensors75 des IEE, der im 24-GHz-ISM-Band mit einem Beleuchtungsbereich von \(76,5^{\circ }\) im Azimut und \(35,5^{\circ }\) in der Elevation. Bei den überwachten Entfernungen führt die geringe Sendeleistung zu Energieabsorptionsraten, die 20-mal unter denen eines Mobiltelefons liegen76. Die ADC-Abtastrate betrug 16 Hz und die Datenerfassung wurde durch proprietäre Software auf dem externen Computer gesteuert.

Referenzkabelgerät. Während aller Messungen waren die Säuglinge an einen Referenzmonitor angeschlossen, der üblicherweise auf der neonatologischen Intensivstation verwendet wird. Darüber hinaus wurden Atmungs-, Herzfrequenz- und Sauerstoffsättigungssignale mit dem VitaGuard\(^\text{\textregistered }\) 3100-Gerät77 aufgezeichnet, das über Kabel mit 3 Kendall\(^\text{\textregistered }\) neonatalen 4203-Elektroden78 verbunden war . Dieses Gerät misst die Atembewegung über die an der Brust des Säuglings angebrachten Elektroden (Impedanzpneumographie) und liefert die Atemfrequenz mit einer Auflösung von 1 bpm und einer Aktualisierungsrate von 1 s. Die Synchronisierung zwischen Referenz- und geschätzten Frequenzwerten wurde offline basierend auf der Korrelation zwischen diesen Signalen durchgeführt. Nach der Verarbeitung einer gesamten Messung (25 Minuten) wird das resultierende Array mit den vom Radar geschätzten Frequenzwerten in einem Schiebefenster-Ansatz mit dem längeren Array mit Referenzwerten verglichen. Der Synchronisationsindex wurde ausgewählt, um die Korrelation zwischen diesen Arrays zu maximieren. Dieser Vorgang wurde automatisch mithilfe einer Matlab-Routine durchgeführt.

Funktionsprinzip des CW-Radars. Das übertragene CW-Signal kann geschrieben werden als

wobei \(A_{\mathrm{T}}\) und \(f_{\mathrm{c}}\) jeweils die übertragene Signalleistung und die Betriebsfrequenz sind und \(\phi (t)\) die ist Phasenrauschen des Senders (Lokaloszillator). Dieses Signal wird durch die Bewegung des Ziels phasenmoduliert und zur Verarbeitung an das Radar reflektiert. Das empfangene Signal von einem Ziel im Nennabstand \(d_0\) kann wie folgt geschrieben werden:

wobei \(A_{\mathrm{R}}\) die empfangene Leistung, \(\lambda\) die Betriebswellenlänge und d(t) die Zielbewegung darstellt. Nach der Demodulation und Analog-Digital-Wandlung und unter der Annahme einer korrekten I/Q-Ungleichgewichtskompensation können die Basisband-I- und Q-Signale als dargestellt werden79

wobei \(\theta _0=4\pi d_0/\lambda\) die konstante Phasenverschiebung ist und \(B_{\mathrm{I}}\) und \(B_{\mathrm{Q}}\) Gleichstrom sind Offsets.

Unter idealen Bedingungen kann der AD zur präzisen Phasenwiederherstellung eingesetzt werden. In diesem Fall wird das Verschiebungssignal als44 rekonstruiert

wobei die Entfaltungsoperation erforderlich ist, um mögliche Phasendiskontinuitäten zu entfernen, die durch den eingeschränkten Bereich der Arkustangensfunktion verursacht werden (umwickelte Phasen um \((-\pi , \pi ]\) werden erwartet, wenn Verschiebungen größer als \(\lambda /4 ​​sind \)). Vor dem Extrahieren der gewünschten Phaseninformationen müssen die Gleichstromkomponenten (\(B_{\mathrm{I}}\) und \(B_{\mathrm{Q}}\)) kompensiert werden73. Vorausgesetzt, dass die ideale Brust Wenn die Wandbewegung (vor und zurück) einen Bogen in der I/Q-Ebene beschreibt, wird diese Kompensation normalerweise mithilfe eines Ellipsenanpassungsalgorithmus erreicht. Kleine Verschiebungen (kleine Bögen), Rauschen und/oder externe Störungen beeinträchtigen jedoch normalerweise die Anpassung Prozess und führen zu einer ungenauen DC-Kompensation. Darüber hinaus ist der Unwrap-Vorgang auch sehr empfindlich gegenüber Rauschen und Interferenzen und kann schließlich Fehler akkumulieren, was zu großen Verzerrungen im wiederhergestellten Verschiebungssignal führt.

Mithilfe des CSD kann das Verschiebungssignal wie folgt rekonstruiert werden45

wobei \({\overline{x}} = B_{\mathrm{I}} + {\mathrm{j}} B_{\mathrm{Q}}\) den kombinierten DC-Offset darstellt. In diesem Fall hat dieser DC-Term jedoch keinen Einfluss auf die relevanten Komponenten des wiederhergestellten Signals und kann in der Praxis leicht durch Subtrahieren des Durchschnitts des Zeitbereichs-Verarbeitungsfensters extrahiert werden. Trotz zusätzlicher Harmonischer höherer Ordnung nähert sich das wiederhergestellte Signal x(t) bei kleinen Verschiebungen (im Verhältnis zur Betriebswellenlänge) der wahren Brustwandbewegung d(t) an und der relevante Frequenzinhalt bleibt erhalten. Daher ist der CSD nicht nur robuster gegenüber DC-Offsets und externen Störungen, sondern vereinfacht auch das Demodulationsverfahren. Eine detaillierte Beschreibung der AD- und CSD-Methoden finden Sie in44 und80.

Nichtnegative Matrixfaktorisierung. Das Größenspektrogramm \(|{{\varvec{X}}}| \in {\mathbb {R}}^{F\times T}\) des wiederhergestellten Verschiebungssignals wird durch die STFT von x(t) erhalten, Dabei sind F und T die Anzahl der in der STFT-Operation verwendeten Frequenz- und Zeitintervalle. Da wir darauf abzielen, die Zeitversion des RBM-gefilterten Signals zu rekonstruieren, muss das STFT-Gewichtungsfenster der konstanten Überlappungs-Add-Eigenschaft81 entsprechen.

Die NMF wird somit auf den Betrag von \({{\varvec{X}}}\ angewendet, und die Faktorisierung kann durch ein Optimierungsproblem erreicht werden, das durch gegeben ist

mit \({{\varvec{H}}}\in {\mathbb {R}}^{K\times T}\) und \({{\varvec{W}}}\in {\mathbb {R} }^{F\times K}\). Das Symbol „\(\succeq\)“ bezeichnet eintragsbezogene Nichtnegativität und \({\mathcal {L}}(\cdot ,\cdot )\) stellt eine generische Ähnlichkeitsmetrik zwischen \(|{{\varvec{ X}}}|\) und \({{\varvec{W}}}{{\varvec{H}}}\). Üblicherweise wird der euklidische (Frobenius-)Abstand verwendet und dabei kann ein einfacher Gradientenabstieg zur Minimierung der Zielfunktion genutzt werden58. Die vordefinierte Anzahl der Basiskomponenten K sollte unter Berücksichtigung der verschiedenen Frequenzkomponenten ausgewählt werden, die im berechneten Spektrogramm vorhanden sein können, einschließlich der Atemfrequenz und eventueller RBM-Interferenzen. Für die Langzeitüberwachung haben wir empirisch \(K=11\) gewählt.

Die Identifizierung der dem RBM entsprechenden Zeitaktivierungsbasis basiert auf einem adaptiven Amplitudenschwellenwert. Das Atemmuster wird von mehreren Faktoren beeinflusst (Subjekt, Geschlecht, Alter, Gesundheitszustand, Körperhaltung) und eine effiziente Störungserkennung erfordert eine adaptive Strategie. Die RBM-Interferenz kann durch ihr ausgeprägtes Verhalten charakterisiert werden, das im Gegensatz zur konstanten und periodischen Natur der Atmung steht. Daher suchen wir im Anschluss an die NMF-Zerlegung nach einer starken (stärker als der Durchschnitt) und spärlichen (kurze Dauer im Verhältnis zum Verarbeitungsfenster) Zeitaktivierungsbasis \({{\varvec{h}}}_i\) in \({ {\varvec{H}}}\). Dies kann einfach durch Vergleichen der lokalen Energie in jeder Zeitkomponente von \({{\varvec{h}}}_i\) mit der durchschnittlichen Energie in \({{\varvec{H}}}\) für die erreicht werden aktuelles Verarbeitungsfenster (unter Normalbedingungen würde das der durchschnittlichen Atemenergie entsprechen). Diese durchschnittliche Energie fungiert als Schwellenwert und ändert sich aufgrund der Art ihrer Berechnung für jedes Fenster und spiegelt die Signalstärke darin wider. Daher wird der Schwellenwert automatisch für jedes Verarbeitungsfenster entsprechend angepasst. Darüber hinaus wird die Sparsity überprüft, indem überprüft wird, ob die verbleibenden Komponenten der ausgewählten Basis eine vernachlässigbare Amplitude aufweisen.

Die Größe des RBM-gefilterten Spektrogramms kann wie folgt rekonstruiert werden:

wobei \(s_i\) angibt, ob die \(i^{\mathrm{th}}\)-Basis dem RBM entspricht oder nicht, d. h. \(s_i = 0\), wenn RBM in der Basis \({{\varvec{ h}}}_i\), oder andernfalls \(s_i = 1\). Um das im Zeitbereich gefilterte Signal \({\hat{x}}(t)\) zu synthetisieren, muss zunächst die Phase des gefilterten Spektrogramms ermittelt werden. Eine gängige Praxis ist die Verwendung eines Wiener-ähnlichen Filteransatzes, der sich in der Wiederverwendung der Phase des ursprünglichen gemischten Spektrogramms \({{\varvec{X}}}\)82 niederschlägt. Die inverse STFT wird schließlich auf \({\hat{{{\varvec{X}}}}} = |{\hat{{{\varvec{X}}}}}| \odot \angle {{{\ varvec{X}}}}\) repliziert die gleiche Fensterkonfiguration (Dauer, Gewichtungen und Überlappung) wie im ursprünglichen STFT. In dieser Arbeit verwenden wir standardmäßige rechteckige Fenster mit einer Dauer von 3 s, einer Überlappung von 2 s und einer Nullauffüllung auf 256 Samples.

Die RBM-Methode wird auf jedes Verarbeitungsfenster angewendet. Die Methode ist in der Lage, die RBM-Interferenz automatisch zu erkennen und zu entfernen, basierend auf dem adaptiven Amplitudenschwellenwert und der Sparsity-Prüfung. Es ist keine manuelle Anmerkung erforderlich. Ohne RBM oder andere störende Effekte enthält das wiederhergestellte Signal nur die konstante und periodische Bewegung der Brustwand, und die resultierenden Zeitaktivierungsbasen \({{\varvec{H}}}\) spiegeln dies wider. In diesem Fall identifiziert der adaptive Amplitudenschwellenwert keine Kandidatenbasis, die RBM enthält, und das gefilterte Signal ist ungefähr das gleiche wie am Eingang des RBM-Blocks.

NLS-Schätzung. Das Atemverschiebungssignal d(t) kann als Summe von \(L_k\) harmonisch verwandten komplexen Sinuskurven modelliert werden, deren Frequenzen ganzzahlige Vielfache einer Grundfrequenz \(\omega _k>0\) sind. Nach der Abtastung für \(n \in \{0, \cdots ,N-1\}\) kann ein solches Signal als 65 geschrieben werden

wobei \(a_{k,l} = A_{k,l} {\mathrm{e}}^{{\mathrm{j}} \phi _{k,l}}\) die komplexe Amplitude des l-ten ist Harmonische, \(L_k\) repräsentiert die Anzahl der Harmonischen (die Modellordnung) und K bezieht sich auf die Anzahl der Komponenten (Punktstreuungen).

Die NLS-Schätzungen werden durch Minimierung der euklidischen Norm der Differenz zwischen dem wiederhergestellten und gefilterten Verschiebungssignal \({\hat{d}}(t)\) und dem Verschiebungssignalmodell in (12) erhalten. Betrachten wir zunächst eine einzelne Quelle k und definieren wir \({{{\varvec{d}}}_k = [\; d_k(0) \; \cdots \; d_k(N-1) \;]^{ \mathrm{T}} \in {\mathbb {C}}^N}\), der Vektor, der aus N aufeinanderfolgenden Stichproben von \(d_k(n)\) besteht, der ausgedrückt werden kann als

mit \({{\varvec{a}}}_k = [\; A_{k,1} {\mathrm{e}}^{{\mathrm{j}} \phi _{k,1}} \; ... \; A_{k,L_k} {\mathrm{e}}^{{\mathrm{j}} \phi _{k,L_k}} \;]^{\mathrm{T}}\) sein wobei der Vektor die komplexen Amplituden der Harmonischen enthält und die Matrix \({{{\varvec{Z}}}_k \in {\mathbb {C}}^{N \times L_k}}\) eine Vandermonde-Struktur hat, wird aus den komplexen Sinusvektoren \(L_k\) konstruiert als

mit \({{\varvec{z}}}(\omega) = [\;1\;{\mathrm{e}}^{{\mathrm{j}}\omega}\;...\;{ \maths{e}}^{{\maths{j}}\omega(N-1)}\;]^{\maths{T}}\). Schreiben von \({\hat{d}}(t)\) als Vektor \({{\hat{{{\varvec{d}}}}} = [\;{\hat{d}}(0) \;\cdots\;{\hat{d}}(N-1)\;]^{\mathrm{T}}\in {\mathbb{C}}^N}\), die NLS schätzt \({ \hat{\omega}}_k\) und \(\hat{{\varvec{a}}}_k\) erhält man schließlich durch Lösung des Problems6

Indem wir zunächst (15) bezüglich der komplexen Amplituden \({{\varvec{a}}}_k\) minimieren, erhalten wir die Schätzung \({\hat{{{\varvec{a}}}}}_k = ( {{\varvec{Z}}}_k^{\mathrm{H}}{{\varvec{Z}}}_k)^{-1}{{\varvec{Z}}}_k^{{\mathrm{ H}}}{\hat{{{\varvec{d}}}}}\), was, wenn es in (15) eingesetzt wird, zu 69 führt

Unter der Annahme von \(N \gg 1\), dann ist \({{\varvec{Z}}}_k^{{\mathrm{H}}} {{\varvec{Z}}}_k \ approx N\cdot {{ \varvec{I}}}_{L_k}\). Wenn wir also nur eine einzige dominante Atmungsstreuung betrachten (d. h. \(K=1\), sodass wir den Index k weglassen können), gilt:

Das Matrixprodukt \({{\varvec{Z}}}^{{\mathrm{H}}} {\hat{{{\varvec{d}}}}}\) kann mit einem FFT-Algorithmus effizient implementiert werden und eine lineare Gittersuche über die Kandidatenfrequenzen \(\left\{ 0, \frac{2\pi }{N},\cdots ,\frac{2\pi }{N}(N-1)\right\}\ ). Der Schätzer reduziert sich somit auf eine Summierung der Atemharmonischen über die spektrale Leistungsdichte des wiederhergestellten Verschiebungssignals \({\hat{d}}(t)\). Normalerweise können in \({\hat{d}}(t)\) einige Harmonische vorhanden sein. Die geringen Bewegungsamplituden der überwachten Patienten bedeuten jedoch ein verringertes SNR, wobei Oberwellen höherer Ordnung häufig durch Rauschen maskiert werden. Daher haben wir in dieser Arbeit \(L_k=2\) übernommen. Darüber hinaus wurde das Suchintervall auf \(\pm 5\) bpm um die anfängliche Zeitbereichsschätzung herum begrenzt.

Der im Rahmen der aktuellen Studie analysierte Originaldatensatz steht unter https://radarmimo.com/ zum Download bereit.

Matlab-Lesefunktionen für Radar und Referenzgerät stehen unter https://radarmimo.com/ zum Download bereit. Eine kurze Beschreibung der Codes finden Sie in der Zusatzdatei 1.

Howson, CP et al. Zu früh geboren: Frühgeburt ist wichtig. Reproduktion. Gesundheit 10, S1 (2013).

Artikel PubMed PubMed Central Google Scholar

Bancalari, E. & Claure, N. Definitionen und diagnostische Kriterien für bronchopulmonale Dysplasie. Semin. Perinatol. 30, 164–170 (2006).

Artikel PubMed Google Scholar

Verder, H. et al. Nasales CPAP und Surfactant zur Behandlung des Atemnotsyndroms und zur Vorbeugung von bronchopulmonaler Dysplasie. Acta Paediatr. 98, 1400–1408 (2009).

Artikel PubMed Google Scholar

Zhao, J., Gonzalez, F. & Mu, D. Apnoe bei Frühgeburt: Von der Ursache zur Behandlung. EUR. J. Pädiatr. 170, 1097–1105 (2011).

Artikel PubMed PubMed Central Google Scholar

Nuytten, A. et al. Postnatale Kortikosteroidrichtlinie für Frühgeborene und bronchopulmonale Dysplasie. Neonatologie 117, 308–315 (2020).

Artikel CAS PubMed Google Scholar

Gaynes, RP et al. Vergleich der Raten nosokomialer Infektionen auf Neugeborenen-Intensivstationen in den Vereinigten Staaten. Bin. J. Med. 91, 192S-196S (2016).

Artikel Google Scholar

Barker, DP & Rutter, N. Exposition gegenüber invasiven Eingriffen bei der Aufnahme von Neugeborenen auf die Intensivstation. Bogen. Dis. Childhood Fetal Neonatal Edn. 72, F47–F48 (1995).

Artikel CAS Google Scholar

Smith, PB et al. Ist eine längere Verweildauer eines peripher eingeführten Katheters mit einem erhöhten Risiko einer Blutkreislaufinfektion bei Säuglingen verbunden? Infizieren. Kontrollkrankenhaus-Epidemiol. 29, 749–753 (2008).

Artikel Google Scholar

Anand, KJ Klinische Bedeutung von Schmerzen und Stress bei Frühgeborenen. Biol. Neonate 73, 1–9 (1998).

Artikel MathSciNet CAS PubMed Google Scholar

Goedicke-Fritz, S. et al. Eine Frühgeburt beeinflusst das Risiko, immunvermittelte Erkrankungen zu entwickeln. Vorderseite. Immunol. 8, 1266 (2017).

Artikel PubMed PubMed Central Google Scholar

Cartlidge, P., Fox, P. & Rutter, N. Die Narben der Neugeborenen-Intensivpflege. Frühe menschliche Entwicklung. 21, 1–10 (1990).

Artikel CAS Google Scholar

Chung, HU et al. Binodale, drahtlose epidermale elektronische Systeme mit In-Sensor-Analytik für die Intensivpflege von Neugeborenen. Wissenschaft 363, 0780 (2019).

Artikel Google Scholar

Chung, HU et al. Mit der Haut verbundene Biosensoren für die fortschrittliche drahtlose physiologische Überwachung auf Intensivstationen für Neugeborene und Kinder. Nat. Med. 3, 418–429 (2020).

Artikel Google Scholar

Steinbach, J. et al. Messung flüchtiger organischer Verbindungen in der Atmosphäre von Neugeboreneninkubatoren am Krankenbett mittels Ionenmobilitätsspektrometrie. Vorderseite. Pädiatr. 7, 248 (2019).

Artikel PubMed PubMed Central Google Scholar

Rogosch, T. et al. Erkennung von Blutkreislaufinfektionen und Vorhersage einer bronchopulmonalen Dysplasie bei Frühgeborenen mit einer elektronischen Nase. J. Pädiatr. 165, 622–624 (2014).

Artikel PubMed Google Scholar

Gangaram-Panday, NH et al. Dynamische Lichtstreuung: Eine neue nichtinvasive Technologie zur Überwachung der Herzfrequenz von Neugeborenen. Neonatologie 117, 279–286 (2020).

Artikel PubMed Google Scholar

Villarroel, M. et al. Berührungslose physiologische Überwachung von Frühgeborenen auf der Neugeborenen-Intensivstation. npj Ziffer. Med. 2, 1–18 (2019).

Artikel Google Scholar

Allen, J. Photoplethysmographie und ihre Anwendung in der klinisch-physiologischen Messung. Physiol. Mess. 28, R1 (2007).

Artikel ADS PubMed Google Scholar

Cobos-Torres, J. et al. Berührungslose, einfache Neugeborenenüberwachung mittels Photoplethysmographie. Sensoren 18, 4362 (2018).

Artikel ADS PubMed Central Google Scholar

Poets, CF Frühgeborenenapnoe: Was können uns Beobachtungsstudien über die Pathophysiologie sagen? Schlafmed. 11, 701–707 (2010).

Artikel PubMed Google Scholar

Dichter, CF et al. Zusammenhang zwischen intermittierender Hypoxämie oder Bradykardie und spätem Tod oder Behinderung bei extrem Frühgeborenen. JAMA 314, 595–603 (2015).

Artikel CAS PubMed Google Scholar

Pereira, CB et al. Berührungslose Überwachung der Atemfrequenz bei Neugeborenen mittels Wärmebildtechnik. IEEE Trans. Biomed. Ing. 66, 1105–1114 (2019).

Artikel PubMed Google Scholar

Abbas, AK et al. Berührungslose Atmungsüberwachung von Neugeborenen basierend auf Echtzeit-Infrarot-Thermografie. Biomed. Ing. Online 10, 1–17 (2011).

Artikel Google Scholar

Pullano, SA et al. Medizinische Geräte zur pädiatrischen Apnoe-Überwachung und -Therapie: Vergangene und neue Trends. IEEE Rev. Biomed. Ing. 10, 199–212 (2017).

Artikel PubMed Google Scholar

Lin, JC Nichtinvasive Mikrowellenmessung der Atmung. Proz. IEEE 63, 1530 (1975).

Artikel Google Scholar

Kebe, M. et al. Methoden zur Erkennung menschlicher Vitalzeichen und Potenziale mithilfe von Radargeräten: Ein Überblick. Sensoren 20, 1454 (2020).

Artikel ADS PubMed Central Google Scholar

Le Kernec, J. et al. Radarsignalverarbeitung zur Sensorik im betreuten Wohnen. IEEE-Signalprozess. Mag. 36, 29–41 (2019).

Artikel ADS Google Scholar

Fioranelli, F., Le Kernec, J. & Shah, SA Radar für das Gesundheitswesen: Menschliche Aktivitäten erkennen und Vitalfunktionen überwachen. IEEE Potentials 38, 16–23 (2019).

Artikel Google Scholar

Shah, SA & Fioranelli, F. HF-Sensortechnologien für das unterstützte tägliche Leben im Gesundheitswesen: Eine umfassende Übersicht. IEEE Aerosp. Elektron. Syst. Mag. 34, 26–44 (2019).

Artikel Google Scholar

Harford, M. et al. Verfügbarkeit und Leistung bildbasierter, berührungsloser Methoden zur Überwachung von Herzfrequenz, Blutdruck, Atemfrequenz und Sauerstoffsättigung: Eine systematische Überprüfung. Physiol. Mess. 40, 06TR01 (2019).

Artikel CAS PubMed Google Scholar

Lorato, I. et al. Auf dem Weg zu einer kontinuierlichen kamerabasierten Atmungsüberwachung bei Säuglingen. Sensoren 21, 1–18 (2021).

Artikel Google Scholar

Mercuri, M. et al. Überwachung der Vitalfunktionen und räumliche Verfolgung mehrerer Personen mithilfe eines berührungslosen Radarsensors. Nat. Elektron. 2, 252–262 (2019).

Artikel Google Scholar

Kim, JD et al. Berührungslose Atmungsüberwachung mittels Impulsfunk-Ultrabreitbandradar bei Neugeborenen. Roy. Soc. Öffnen Sie Sci. 6, 6 (2019).

Google Scholar

Lee, WH et al. Machbarkeit einer berührungslosen kardiorespiratorischen Überwachung mittels Impulsfunk-Ultrabreitbandradar auf der Neugeborenen-Intensivstation. PLoS ONE 15, 1–15 (2021).

Google Scholar

Park, J. et al. Präklinische Bewertung der berührungslosen Überwachung von Vitalfunktionen mithilfe von Echtzeit-IR-UWB-Radar und Faktoren, die sich auf die Genauigkeit auswirken. Wissenschaft. Rep. 11, 1–12 (2021).

Artikel Google Scholar

Adib, F., Mao, H., Kabelac, Z., Katabi, D. & Miller, RC Intelligente Häuser, die Atmung und Herzfrequenz überwachen. Konf. Summen. Tatsache. Berechnen. Syst. Proz. 1, 837–846 (2015).

Artikel Google Scholar

Khan, F. et al. Ein detaillierter Algorithmus zur Überwachung der Vitalfunktionen eines stationären/instationären Menschen durch IR-UWB-Radar. Sensoren 17, 4261–4270 (2017).

Artikel Google Scholar

De Groote, A. et al. Bewegung der Brustwand während der Ruheatmung. J. Appl. Physiol. 83, 1531–1537 (1997).

Artikel PubMed Google Scholar

Fleming, S. et al. Normale Bereiche der Herzfrequenz und Atemfrequenz bei Kindern von der Geburt bis zum 18. Lebensjahr: Eine systematische Überprüfung von Beobachtungsstudien. Lancet 377, 1011–1018 (2011).

Artikel PubMed PubMed Central Google Scholar

Gouna, G. et al. Auswirkungen der Positionierung auf die Lungenfunktion und das Atemmuster bei Frühgeborenen. J. Pädiatr. 162, 1133–1137 (2013).

Artikel PubMed Google Scholar

te Pas, AB et al. Atemmuster bei Früh- und Reifgeborenen unmittelbar nach der Geburt. Pädiatr. Res. 65, 352–356 (2009).

Artikel Google Scholar

Hayward, KM et al. Auswirkung der gemeinsamen Bettung von Zwillingen auf die Koregulation, den Säuglingszustand und die Zwillingssicherheit. J. Obstetr. Gynäkologie. Neugeborenenkrankenschwestern. 44, 193–202 (2015).

Artikel Google Scholar

Badiee, Z., Nassiri, Z. & Armanian, A. Gemeinsames Einbetten von Zwillings-Frühgeborenen: Beruhigende Wirkung auf Schmerzreaktionen. Pädiatr. Neonatol. 55, 262–268 (2014).

Artikel PubMed Google Scholar

Park, BK, Boric-Lubecke, O. & Lübecke, VM Arcustangens-Demodulation mit DC-Offset-Kompensation in Quadratur-Doppler-Radarempfängersystemen. IEEE Trans. Mikrowelle. Theorie Tech. 55, 1073–1078 (2007).

Artikel ADS Google Scholar

Li, C. & Lin, J. Zufällige Körperbewegungsunterdrückung bei der Doppler-Radar-Vitalzeichenerkennung. IEEE Trans. Mikrowelle. Theorie Tech. 56, 3143–3152 (2008).

Artikel ADS Google Scholar

Fenner, A. et al. Periodische Atmung bei Früh- und Neugeborenen: Häufigkeit, Atemmuster, Atemgasspannungen, Reaktion auf Veränderungen in der Zusammensetzung der Umgebungsluft. Pädiatr. Res. 7, 174–183 (1973).

Artikel CAS PubMed Google Scholar

Patel, M. et al. Klinische Zusammenhänge mit unreifer Atmung bei Frühgeborenen: Teil 2 – periodische Atmung. Pädiatr. Res. 80, 28–34 (2016).

Artikel PubMed PubMed Central Google Scholar

Mohr, MA et al. Quantifizierung der periodischen Atmung bei Frühgeborenen. Physiol. Mess. 36, 1415 (2015).

Artikel PubMed PubMed Central Google Scholar

Weintraub, Z. et al. Die Morphologie der periodischen Atmung bei Säuglingen und Erwachsenen. Atmung. Physiol. 127, 173–184 (2001).

Artikel CAS PubMed Google Scholar

Al-Naji, A., Gibson, K., Lee, SH & Chahl, J. Überwachung des kardiorespiratorischen Signals: Prinzipien von Fernmessungen und Überprüfung der Methoden. IEEE Access 5, 15776–15790 (2017).

Artikel Google Scholar

Kranjec, J. et al. Berührungslose Herzfrequenz- und Herzfrequenzvariabilitätsmessungen: Ein Rückblick. Biomed. Signalprozess. Kontrolle 13, 102–112 (2014).

Artikel Google Scholar

Shafiq, G. & Veluvolu, KC Oberflächenzerlegung der Brustbewegung zur kardiovaskulären Überwachung. Wissenschaft. Rep. 4, 1–9 (2014).

Google Scholar

Li, C. Vitalparameterüberwachung für unterwegs. Nat. Elektron. 2, 219–220 (2019).

Artikel Google Scholar

Li, C., Cummings, J., Lam, J., Graves, E. & Wu, W. Radar-Fernüberwachung von Vitalfunktionen. IEEE Microw. Mag. 10, 47–56 (2009).

Artikel Google Scholar

Yu, X., Li, C. & Lin, J. Zweidimensionale berührungslose Vitalzeichenerkennung mithilfe des Doppler-Radar-Array-Ansatzes. IEEE MTT-S Int. Mikrowelle. Sympos. Graben. 1, 1–4 (2011).

CAS Google Scholar

Munoz-Ferreras, JM et al. Abschwächung zufälliger Körperbewegungen für die FMCW-Radar-basierte Vitalparameterüberwachung. IEEE Top. Konf. Biomed. Wirel. Technol. Netw. Sens. Syst. 1, 22–24 (2016).

Google Scholar

Lee, DD & Seung, HS Lernen der Teile von Objekten durch NNMF. Nature 401, 788–791 (1999).

Artikel ADS CAS MATH PubMed Google Scholar

Berry, MW et al. Algorithmen und Anwendungen zur approximativen nichtnegativen Matrixfaktorisierung. Berechnen. Stat. Daten Anal. 52, 155–173 (2007).

Artikel MathSciNet MATH Google Scholar

Tu, J., Hwang, T. & Lin, J. Messung der Atemfrequenz unter 1-D-Körperbewegung mit einem einzelnen Dauerstrich-Doppler-Radar-Vitalzeichenerkennungssystem. IEEE Trans. Mikrowelle. Theorie Tech. 64, 1937–1946 (2016).

Artikel ADS Google Scholar

Rong, Y. & Bliss, DW Fernerkundung für wichtige Informationen basierend auf harmonischen Signaturen im Spektralbereich. IEEE Trans. Aerosp. Elektron. Syst. 55, 3454–3465 (2019).

Artikel ADS Google Scholar

Albanese, A., Cheng, L., Ursino, M. & Chbat, NW Ein integriertes mathematisches Modell des menschlichen Herz-Lungen-Systems: Modellentwicklung. Bin. J. Physiol. Herz-Kreislauf. Physiol. 310, H899–H921 (2016).

Artikel Google Scholar

Frey, U. et al. Unregelmäßigkeiten und Potenzgesetzverteilungen im Atemmuster bei Früh- und Reifgeborenen. J. Appl. Physiol. 85, 789–797 (1998).

Artikel CAS PubMed Google Scholar

Karahasanovic, U. et al. Mathematische Modellierung und Simulation komplexer Atemmuster, die von Radarsensoren erfasst werden. Proz. Int. Radarsympos. 52, 1–10 (2018).

Google Scholar

Stoica, P. et al. Spektralanalyse von Signalen Bd. 4 (Pearson Prentice Hall, Upper Saddle River, 2005).

MATH Google Scholar

Christensen, MG & Jakobsson, A. Multi-Pitch Estimation (Morgan & Claypool, New York, 2009).

Buchen Sie MATH Google Scholar

Lohman, B. et al. Ein digitaler Signalprozessor für die Doppler-Radar-Erfassung von Vitalfunktionen. Proz. Ann. Int. Konf. IEEE Eng. Med. Biol. Soc. 4, 3359–3362 (2001).

Google Scholar

Nosrati, M. & Tavassolian, N. Hochpräzise Überwachung der Herzfrequenzvariabilität mithilfe von Doppler-Radar basierend auf der Gaußschen Pulszugmodellierung und dem FTPR-Algorithmus. IEEE Trans. Mikrowelle. Theorie Tech. 66, 556–567 (2018).

Artikel ADS Google Scholar

Wei, J., Zhang, L. & Liu, H. Berührungslose Technik zur Extraktion und Rekonstruktion von Lebenssignalen basierend auf MAE. IEEE Access 7, 110826–110834 (2019).

Artikel Google Scholar

Christensen, MG, Stoica, P., Jakobsson, A. & Jensen, SH Mehrseillängenschätzung. Signalprozess. 88, 972–983 (2008).

Artikel MATH Google Scholar

https://www.mathworks.com/products/matlab.html.

Bakhtiari, S. et al. Eine Echtzeit-Herzfrequenzanalyse für einen entfernten Millimeterwellen-IQ-Sensor. IEEE Trans. Biomed. Ing. 58, 1839–1845 (2011).

Artikel PubMed Google Scholar

Nosrati, M. & Tavassolian, N. Präzise kardiopulmonale Erfassung auf Doppler-Radar-Basis unter Verwendung der Brustwandbeschleunigung. IEEE J. Electromag. RF-Mikrow. Med. Biol. 3, 41–47 (2019).

Artikel Google Scholar

Alizadeh, M. et al. Fernüberwachung menschlicher Vitalfunktionen mithilfe von mm-Wellen-FMCW-Radar. IEEE Access 7, 54958–54968 (2019).

Artikel Google Scholar

van Loon, K. et al. Genauigkeit von Technologien zur kontinuierlichen Fernüberwachung der Atemfrequenz, die für klinische Umgebungen mit geringem Pflegeaufwand vorgesehen sind: Eine prospektive Beobachtungsstudie. Dürfen. J. Anesth. 65, 1324–1332 (2018).

Artikel PubMed Google Scholar

Diewald, AR et al. RF-basierte Kinderbesetzungserkennung im Fahrzeuginnenraum. Proz. Int. Radarsympos. 1, 1–4 (2016).

Google Scholar

Larsen, P. & Mousel, T. Radiofrequenzbasierte Erkennung unbeaufsichtigter Kinder zur Reduzierung der Todesfälle durch Hitzschlag im Fahrzeug. Proz. IRCOBI Conf. 1, 220–233 (2017).

Google Scholar

https://www.getemed.de/de/monitoring.

https://www.cardinalhealth.co.uk/en_gb/medical-products/patient-care/electrocardiography/neonatal-ecg-electrodes.html.

Hu, W. et al. Berührungslose, genaue Messung der Herz-Lungen-Aktivität mithilfe eines kompakten Quadratur-Doppler-Radarsensors. IEEE Trans. Biomed. Ing. 61, 725–735 (2014).

Artikel ADS PubMed Google Scholar

Li, C. & Lin, J. Komplexe Techniken zur Signaldemodulation und zufälligen Körperbewegungsunterdrückung zur berührungslosen Erkennung von Vitalzeichen. IEEE MTT-S Int. Mikrowelle. Sympos. Graben. 1, 567–570 (2008).

Google Scholar

Verhelst, W. Overlap-Add-Methoden zur Zeitskalierung von Sprache. Redekommun. 30, 207–221 (2000).

Artikel Google Scholar

Magron, P., Badeau, R. & David, B. Modellbasierte STFT-Phasenwiederherstellung für die Audioquellentrennung. IEEE/ACM-Trans. Audio-Sprachsprache. Verfahren. 26, 1091–1101 (2018).

Artikel Google Scholar

Referenzen herunterladen

Diese Arbeit wurde vom Luxembourg National Research Fund (FNR) im Rahmen des FNR Industrial Fellowship Grant, Projekt MIDIA, Referenz 14269859, unterstützt.

Diese Autoren haben gleichermaßen beigetragen: Gabriel Beltrão und Regine Stutz.

SnT – Interdisziplinäres Zentrum für Sicherheit, Zuverlässigkeit und Vertrauen, Universität Luxemburg, Luxemburg, Luxemburg

Gabriel Beltrão, Wallace A. Martins, Mohammad Alaee-Kerahroodi und Bhavani Shankar MR

Abteilung für Allgemeine Pädiatrie und Neonatologie, Medizinische Fakultät der Universität des Saarlandes, Homburg, Deutschland

Regine Stutz, Franziska Hornberger, Ulrike Lindner, Lilly Stock, Elisabeth Kaiser, Sybelle Goedicke-Fritz & Michael Zemlin

IEE S/A, Bissen, Luxemburg

Dmitri Tatarinow und Udo Schröder

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

Sie können diesen Autor auch in PubMed Google Scholar suchen

GB hat die Arbeit geschrieben, die Algorithmen entwickelt, die Software implementiert, die Daten analysiert und interpretiert. WAM leistete einen Beitrag zum Algorithmus zur Abschwächung zufälliger Körperbewegungen, gab technisches Feedback und redigierte das endgültige Manuskript. MA gab technisches Feedback, redigierte das endgültige Manuskript und betreute die Forschung mit. BSM gab technisches Feedback, redigierte das endgültige Manuskript und überwachte die Forschung. DT konzipierte und entwarf das Radarsystem, entwickelte den Messaufbau, überwachte die Messungen, leistete einen Beitrag zum Algorithmus zur Abschwächung zufälliger Körperbewegungen, lieferte technisches Feedback und redigierte das endgültige Manuskript. Die USA leisteten einen Beitrag zum Algorithmus zur Abschwächung zufälliger Körperbewegungen, gaben technisches Feedback und redigierten das endgültige Manuskript. RS hat die Studie entworfen und die Arbeit verfasst. FH konzipierte die Studie, führte die Messungen sowie die erste und klinische Datenauswertung durch. MZ konzipierte die Studie und überwachte die Forschung. UL und LS erklärten den Eltern die Studie, holten ihre schriftliche Einwilligung zur Teilnahme ein und überwachten auch die Studien. EK unterstützte bei organisatorischen Aufgaben und überwachte die Messungen. SGF unterstützte bei organisatorischen Aufgaben. Alle Autoren haben durch Durchsicht des Manuskripts einen Beitrag geleistet und die eingereichte Version genehmigt.

Korrespondenz mit Gabriel Beltrão oder Regine Stutz.

Die Autoren geben an, dass keine Interessenkonflikte bestehen.

Springer Nature bleibt neutral hinsichtlich der Zuständigkeitsansprüche in veröffentlichten Karten und institutionellen Zugehörigkeiten.

Open Access Dieser Artikel ist unter einer Creative Commons Attribution 4.0 International License lizenziert, die die Nutzung, Weitergabe, Anpassung, Verbreitung und Reproduktion in jedem Medium oder Format erlaubt, sofern Sie den/die Originalautor(en) und die Quelle angemessen angeben. Geben Sie einen Link zur Creative Commons-Lizenz an und geben Sie an, ob Änderungen vorgenommen wurden. Die Bilder oder anderes Material Dritter in diesem Artikel sind in der Creative Commons-Lizenz des Artikels enthalten, sofern in der Quellenangabe für das Material nichts anderes angegeben ist. Wenn Material nicht in der Creative-Commons-Lizenz des Artikels enthalten ist und Ihre beabsichtigte Nutzung nicht gesetzlich zulässig ist oder über die zulässige Nutzung hinausgeht, müssen Sie die Genehmigung direkt vom Urheberrechtsinhaber einholen. Um eine Kopie dieser Lizenz anzuzeigen, besuchen Sie http://creativecommons.org/licenses/by/4.0/.

Nachdrucke und Genehmigungen

Beltrão, G., Stutz, R., Hornberger, F. et al. Kontaktloses Radar-basiertes Atemmonitoring von Frühgeborenen auf der Neugeborenen-Intensivstation. Sci Rep 12, 5150 (2022). https://doi.org/10.1038/s41598-022-08836-3

Zitat herunterladen

Eingegangen: 08. Oktober 2021

Angenommen: 03. März 2022

Veröffentlicht: 25. März 2022

DOI: https://doi.org/10.1038/s41598-022-08836-3

Jeder, mit dem Sie den folgenden Link teilen, kann diesen Inhalt lesen:

Leider ist für diesen Artikel derzeit kein Link zum Teilen verfügbar.

Bereitgestellt von der Content-Sharing-Initiative Springer Nature SharedIt

Wissenschaftliche Berichte (2022)

Durch das Absenden eines Kommentars erklären Sie sich damit einverstanden, unsere Nutzungsbedingungen und Community-Richtlinien einzuhalten. Wenn Sie etwas als missbräuchlich empfinden oder etwas nicht unseren Bedingungen oder Richtlinien entspricht, kennzeichnen Sie es bitte als unangemessen.